the PDL::Slices(3) man page
 NAME
 SYNOPSIS
 DESCRIPTION
 FUNCTIONS
 s_identity
 index
 index1d
 index2d
 indexNDb
 indexND
 rangeb
 range
 rld
 rle
 xchg
 reorder
 mv
 oneslice
 oslice
 using
 diagonalI
 lags
 splitdim
 rotate
 threadI
 identvaff
 unthread
 dice
 dice_axis
 slice
 sliceb
 BUGS
 AUTHOR
NAME
PDL::Slices  Indexing, slicing, and dicing
SYNOPSIS
use PDL; $a = ones(3,3); $b = $a>slice('1:0,(1)'); $c = $a>dummy(2);
DESCRIPTION
This package provides many of the powerful PerlDL core index manipulation routines. These routines mostly allow twoway data flow, so you can modify your data in the most convenient representation. For example, you can make a 1000x1000 unit matrix with
$a = zeroes(1000,1000); $a>diagonal(0,1) ++;
which is quite efficient. See the PDL::Indexing manpage and the PDL::Tips manpage for more examples.
Slicing is so central to the PDL language that a special compiletime syntax has been introduced to handle it compactly; see the PDL::NiceSlice manpage for details.
PDL indexing and slicing functions usually include twoway data flow, so that you can separate the actions of reshaping your data structures and modifying the data themselves. Two special methods, copy and sever, help you control the data flow connection between related variables.
$b = $a>slice("1:3"); # Slice maintains a link between $a and $b. $b += 5; # $a is changed!
If you want to force a physical copy and no data flow, you can copy or sever the slice expression:
$b = $a>slice("1:3")>copy; $b += 5; # $a is not changed.
$b = $a>slice("1:3")>sever; $b += 5; # $a is not changed.
The difference between sever
and copy
is that sever acts on (and
returns) its argument, while copy produces a disconnected copy. If you
say
$b = $a>slice("1:3"); $c = $b>sever;
then the variables $b
and $c
point to the same object but with
>copy
they would not.
FUNCTIONS
s_identity
Signature: (P(); C())
Internal vaffine identity function.
s_identity processes bad values. It will set the badvalue flag of all output piddles if the flag is set for any of the input piddles.
index
Signature: (a(n); indx ind(); [oca] c())
index
, index1d
, and index2d
provide rudimentary index indirection.
$c = index($source,$ind); $c = index1d($source,$ind); $c = index2d($source2,$ind1,$ind2);
use the $ind
variables as indices to look up values in $source
.
The three routines thread slightly differently.

index
uses direct threading for 1D indexing across the 0 dim of$source
. It can thread over source thread dims or index thread dims, but not (easily) both: If$source
has more than 1 dimension and$ind
has more than 0 dimensions, they must agree in a threading sense. 
index1d
uses a single active dim in$ind
to produce a list of indexed values in the 0 dim of the output  it is useful for collapsing$source
by indexing with a single row of values along$source
's 0 dimension. The output has the same number of dims as$source
. The 0 dim of the output has size 1 if$ind
is a scalar, and the same size as the 0 dim of$ind
if it is not. If$ind
and$source
both have more than 1 dim, then all dims higher than 0 must agree in a threading sense. 
index2d
works likeindex
but uses separate piddles for X and Y coordinates. For more general Ndimensional indexing, see the PDL::NiceSlice syntax or PDL::Slices (in particularslice
,indexND
, andrange
).
These functions are twoway, i.e. after
$c = $a>index(pdl[0,5,8]); $c .= pdl [0,2,4];
the changes in $c
will flow back to $a
.
index
provids simple threading: multipledimensioned arrays are treated
as collections of 1D arrays, so that
$a = xvals(10,10)+10*yvals(10,10); $b = $a>index(3); $c = $a>index(9xvals(10));
puts a single column from $a
into $b
, and puts a single element
from each column of $a
into $c
. If you want to extract multiple
columns from an array in one operation, see dice or
indexND.
index barfs if any of the index values are bad.
index1d
Signature: (a(n); indx ind(m); [oca] c(m))
index
, index1d
, and index2d
provide rudimentary index indirection.
$c = index($source,$ind); $c = index1d($source,$ind); $c = index2d($source2,$ind1,$ind2);
use the $ind
variables as indices to look up values in $source
.
The three routines thread slightly differently.

index
uses direct threading for 1D indexing across the 0 dim of$source
. It can thread over source thread dims or index thread dims, but not (easily) both: If$source
has more than 1 dimension and$ind
has more than 0 dimensions, they must agree in a threading sense. 
index1d
uses a single active dim in$ind
to produce a list of indexed values in the 0 dim of the output  it is useful for collapsing$source
by indexing with a single row of values along$source
's 0 dimension. The output has the same number of dims as$source
. The 0 dim of the output has size 1 if$ind
is a scalar, and the same size as the 0 dim of$ind
if it is not. If$ind
and$source
both have more than 1 dim, then all dims higher than 0 must agree in a threading sense. 
index2d
works likeindex
but uses separate piddles for X and Y coordinates. For more general Ndimensional indexing, see the PDL::NiceSlice syntax or PDL::Slices (in particularslice
,indexND
, andrange
).
These functions are twoway, i.e. after
$c = $a>index(pdl[0,5,8]); $c .= pdl [0,2,4];
the changes in $c
will flow back to $a
.
index
provids simple threading: multipledimensioned arrays are treated
as collections of 1D arrays, so that
$a = xvals(10,10)+10*yvals(10,10); $b = $a>index(3); $c = $a>index(9xvals(10));
puts a single column from $a
into $b
, and puts a single element
from each column of $a
into $c
. If you want to extract multiple
columns from an array in one operation, see dice or
indexND.
index1d propagates BAD index elements to the output variable.
index2d
Signature: (a(na,nb); indx inda(); indx indb(); [oca] c())
index
, index1d
, and index2d
provide rudimentary index indirection.
$c = index($source,$ind); $c = index1d($source,$ind); $c = index2d($source2,$ind1,$ind2);
use the $ind
variables as indices to look up values in $source
.
The three routines thread slightly differently.

index
uses direct threading for 1D indexing across the 0 dim of$source
. It can thread over source thread dims or index thread dims, but not (easily) both: If$source
has more than 1 dimension and$ind
has more than 0 dimensions, they must agree in a threading sense. 
index1d
uses a single active dim in$ind
to produce a list of indexed values in the 0 dim of the output  it is useful for collapsing$source
by indexing with a single row of values along$source
's 0 dimension. The output has the same number of dims as$source
. The 0 dim of the output has size 1 if$ind
is a scalar, and the same size as the 0 dim of$ind
if it is not. If$ind
and$source
both have more than 1 dim, then all dims higher than 0 must agree in a threading sense. 
index2d
works likeindex
but uses separate piddles for X and Y coordinates. For more general Ndimensional indexing, see the PDL::NiceSlice syntax or PDL::Slices (in particularslice
,indexND
, andrange
).
These functions are twoway, i.e. after
$c = $a>index(pdl[0,5,8]); $c .= pdl [0,2,4];
the changes in $c
will flow back to $a
.
index
provids simple threading: multipledimensioned arrays are treated
as collections of 1D arrays, so that
$a = xvals(10,10)+10*yvals(10,10); $b = $a>index(3); $c = $a>index(9xvals(10));
puts a single column from $a
into $b
, and puts a single element
from each column of $a
into $c
. If you want to extract multiple
columns from an array in one operation, see dice or
indexND.
index2d barfs if either of the index values are bad.
indexNDb
Backwardscompatibility alias for indexND
indexND
Find selected elements in an ND piddle, with optional boundary handling
$out = $source>indexND( $index, [$method] )
$source = 10*xvals(10,10) + yvals(10,10); $index = pdl([[2,3],[4,5]],[[6,7],[8,9]]); print $source>indexND( $index );
[ [23 45] [67 89] ]
IndexND collapses $index
by lookup into $source
. The
0th dimension of $index
is treated as coordinates in $source
, and
the return value has the same dimensions as the rest of $index
.
The returned elements are looked up from $source
. Dataflow
works  propagated assignment flows back into $source
.
IndexND and IndexNDb were originally separate routines but they are both now implemented as a call to range, and have identical syntax to one another.
rangeb
Signature: (P(); C(); SV *index; SV *size; SV *boundary)
Engine for range
Same calling convention as range, but you must supply all
parameters. rangeb
is marginally faster as it makes a direct PP call,
avoiding the perl argumentparsing step.
range
Extract selected chunks from a source piddle, with boundary conditions
$out = $source>range($index,[$size,[$boundary]])
Returns elements or rectangular slices of the original piddle, indexed by
the $index
piddle. $source
is an Ndimensional piddle, and $index
is
a piddle whose first dimension has size up to N. Each row of $index
is
treated as coordinates of a single value or chunk from $source
, specifying
the location(s) to extract.
If you specify a single index location, then range is essentially an expensive slice, with controllable boundary conditions.
INPUTS
$index
and $size
can be piddles or array refs such as you would
feed to zeroes and its ilk. If $index
's 0th dimension
has size higher than the number of dimensions in $source
, then
$source
is treated as though it had trivial dummy dimensions of
size 1, up to the required size to be indexed by $index
 so if
your source array is 1D and your index array is a list of 3vectors,
you get two dummy dimensions of size 1 on the end of your source array.
You can extract single elements or ND rectangular ranges from $source
,
by setting $size
. If $size
is undef or zero, then you get a single
sample for each row of $index
. This behavior is similar to
indexNDb, which is in fact implemented as a call to range.
If $size
is positive then you get a range of values from $source
at
each location, and the output has extra dimensions allocated for them.
$size
can be a scalar, in which case it applies to all dimensions, or an
Nvector, in which case each element is applied independently to the
corresponding dimension in $source
. See below for details.
$boundary
is a number, string, or list ref indicating the type of
boundary conditions to use when ranges reach the edge of $source
. If you
specify no boundary conditions the default is to forbid boundary violations
on all axes. If you specify exactly one boundary condition, it applies to
all axes. If you specify more (as elements of a list ref, or as a packed
string, see below), then they apply to dimensions in the order in which they
appear, and the last one applies to all subsequent dimensions. (This is
less difficult than it sounds; see the examples below).
 (synonyms: 'f','forbid') (default)
Ranges are not allowed to cross the boundary of the original PDL. Disallowed ranges throw an error. The errors are thrown at evaluation time, not at the time of the range call (this is the same behavior as slice).
 (synonyms: 't','truncate')
Values outside the original piddle get BAD if you've got bad value support compiled into your PDL and set the badflag for the source PDL; or 0 if you haven't (you must set the badflag if you want BADs for out of bound values, otherwise you get 0). Reverse dataflow works OK for the portion of the child that is inbounds. The outofbounds part of the child is reset to (BAD0) during each dataflow operation, but execution continues.
 (synonyms: 'e','x','extend')
Values that would be outside the original piddle point instead to the nearest allowed value within the piddle. See the CAVEAT below on mappings that are not single valued.
 (synonyms: 'p','periodic')
Periodic boundary conditions apply: the numbers in $index are applied, strictmodulo the corresponding dimensions of $source. This is equivalent to duplicating the $source piddle throughout ND space. See the CAVEAT below about mappings that are not single valued.
 (synonyms: 'm','mirror')
Mirrorreflection periodic boundary conditions apply. See the CAVEAT below about mappings that are not single valued.
The boundary condition identifiers all begin with unique characters, so you can feed in multiple boundary conditions as either a list ref or a packed string. (The packed string is marginally faster to run). For example, the four expressions [0,1], ['forbid','truncate'], ['f','t'], and 'ft' all specify that violating the boundary in the 0th dimension throws an error, and all other dimensions get truncated.
If you feed in a single string, it is interpreted as a packed boundary array if all of its characters are valid boundary specifiers (e.g. 'pet'), but as a single wordstyle specifier if they are not (e.g. 'forbid').
OUTPUT
The output threads over both $index
and $source
. Because implicit
threading can happen in a couple of ways, a little thought is needed. The
returned dimension list is stacked up like this:
(index thread dims), (index dims (size)), (source thread dims)
The first few dims of the output correspond to the extra dims of
$index
(beyond the 0 dim). They allow you to pick out individual
ranges from a large, threaded collection.
The middle few dims of the output correspond to the size dims
specified in $size
, and contain the range of values that is extracted
at each location in $source
. Every nonzero element of $size
is copied to
the dimension list here, so that if you feed in (for example) $size
= [2,0,1]
you get an index dim list of (2,1)
.
The last few dims of the output correspond to extra dims of $source
beyond
the number of dims indexed by $index
. These dims act like ordinary
thread dims, because adding more dims to $source
just tacks extra dims
on the end of the output. Each source thread dim ranges over the entire
corresponding dim of $source
.
Dataflow: Dataflow is bidirectional.
Examples:
Here are basic examples of range
operation, showing how to get
ranges out of a small matrix. The first few examples show extraction
and selection of individual chunks. The last example shows
how to mark loci in the original matrix (using dataflow).
pdl> $src = 10*xvals(10,5)+yvals(10,5) pdl> print $src>range([2,3]) # Cut out a single element 23 pdl> print $src>range([2,3],1) # Cut out a single 1x1 block [ [23] ] pdl> print $src>range([2,3], [2,1]) # Cut a 2x1 chunk [ [23 33] ] pdl> print $src>range([[2,3]],[2,1]) # Trivial list of 1 chunk [ [ [23] [33] ] ] pdl> print $src>range([[2,3],[0,1]], [2,1]) # two 2x1 chunks [ [ [23 1] [33 11] ] ] pdl> # A 2x2 collection of 2x1 chunks pdl> print $src>range([[[1,1],[2,2]],[[2,3],[0,1]]],[2,1]) [ [ [ [11 22] [23 1] ] [ [21 32] [33 11] ] ] ] pdl> $src = xvals(5,3)*10+yvals(5,3) pdl> print $src>range(3,1) # Thread over y dimension in $src [ [30] [31] [32] ]
pdl> $src = zeroes(5,4); pdl> $src>range(pdl([2,3],[0,1]),pdl(2,1)) .= xvals(2,2,1) + 1 pdl> print $src [ [0 0 0 0 0] [2 2 0 0 0] [0 0 0 0 0] [0 0 1 1 0] ]
CAVEAT: It's quite possible to select multiple ranges that intersect. In that case, modifying the ranges doesn't have a guaranteed result in the original PDL  the result is an arbitrary choice among the valid values. For some things that's OK; but for others it's not. In particular, this doesn't work:
pdl> $photon_list = new PDL::RandVar>sample(500)>reshape(2,250)*10 pdl> histogram = zeroes(10,10) pdl> histogram>range($photon_list,1)++; #not what you wanted
The reason is that if two photons land in the same bin, then that bin doesn't get incremented twice. (That may get fixed in a later version...)
PERMISSIVE RANGING: If $index
has too many dimensions compared
to $source
, then $source is treated as though it had dummy
dimensions of size 1, up to the required number of dimensions. These
virtual dummy dimensions have the usual boundary conditions applied to
them.
If the 0 dimension of $index
is ludicrously large (if its size is
more than 5 greater than the number of dims in the source PDL) then
range will insist that you specify a size in every dimension, to make
sure that you know what you're doing. That catches a common error with
range usage: confusing the initial dim (which is usually small) with another
index dim (perhaps of size 1000).
If the index variable is Empty, then range()
always returns the Empty PDL.
If the index variable is not Empty, indexing it always yields a boundary
violation. All nonbarfing conditions are treated as truncation, since
there are no actual data to return.
EFFICIENCY: Because range
isn't an affine transformation (it
involves lookup into a list of ND indices), it is somewhat
memoryinefficient for long lists of ranges, and keeping dataflow open
is much slower than for affine transformations (which don't have to copy
data around).
Doing operations on small subfields of a large range is inefficient because the engine must flow the entire range back into the original PDL with every atomic perl operation, even if you only touch a single element. One way to speed up such code is to sever your range, so that PDL doesn't have to copy the data with each operation, then copy the elements explicitly at the end of your loop. Here's an example that labels each region in a range sequentially, using many small operations rather than a single xvals assignment:
### How to make a collection of small ops run fast with range... $a = $data>range($index, $sizes, $bound)>sever; $aa = $data>range($index, $sizes, $bound); map { $a($_  1) .= $_; } (1..$a>nelem); # Lots of little ops $aa .= $a;
range
is a perl frontend to a PP function, rangeb
. Calling
rangeb
is marginally faster but requires that you include all arguments.
DEVEL NOTES
* index thread dimensions are effectively clumped internally. This makes it easier to loop over the index array but a little more brainbending to tease out the algorithm.
rangeb processes bad values. It will set the badvalue flag of all output piddles if the flag is set for any of the input piddles.
rld
Signature: (indx a(n); b(n); [o]c(m))
Runlength decode a vector
Given a vector $a
of the numbers of instances of values $b
, runlength
decode to $c
.
rld($a,$b,$c=null);
rld does not process bad values. It will set the badvalue flag of all output piddles if the flag is set for any of the input piddles.
rle
Signature: (c(n); indx [o]a(n); [o]b(n))
Runlength encode a vector
Given vector $c
, generate a vector $a
with the number of each element,
and a vector $b
of the unique values. Only the elements up to the
first instance of 0
in $a
should be considered.
rle($c,$a=null,$b=null);
rle does not process bad values. It will set the badvalue flag of all output piddles if the flag is set for any of the input piddles.
xchg
Signature: (P(); C(); int n1; int n2)
exchange two dimensions
Negative dimension indices count from the end.
The command
$b = $a>xchg(2,3);
creates $b
to be like $a
except that the dimensions 2 and 3
are exchanged with each other i.e.
$b>at(5,3,2,8) == $a>at(5,3,8,2)
xchg does not process bad values. It will set the badvalue flag of all output piddles if the flag is set for any of the input piddles.
reorder
Reorders the dimensions of a PDL based on the supplied list.
Similar to the xchg method, this method reorders the dimensions of a PDL. While the xchg method swaps the position of two dimensions, the reorder method can change the positions of many dimensions at once.
# Completely reverse the dimension order of a 6Dim array. $reOrderedPDL = $pdl>reorder(5,4,3,2,1,0);
The argument to reorder is an array representing where the current dimensions
should go in the new array. In the above usage, the argument to reorder
(5,4,3,2,1,0)
indicates that the old dimensions ($pdl
's dims) should be rearranged to make the
new pdl ($reOrderPDL
) according to the following:
Old Position New Position   5 0 4 1 3 2 2 3 1 4 0 5
You do not need to specify all dimensions, only a complete set
starting at position 0. (Extra dimensions are left where they are).
This means, for example, that you can reorder()
the X and Y dimensions of
an image, and not care whether it is an RGB image with a third dimension running
across color plane.
Example:
pdl> $a = sequence(5,3,2); # Create a 3d Array pdl> p $a [ [ [ 0 1 2 3 4] [ 5 6 7 8 9] [10 11 12 13 14] ] [ [15 16 17 18 19] [20 21 22 23 24] [25 26 27 28 29] ] ] pdl> p $a>reorder(2,1,0); # Reverse the order of the 3D PDL [ [ [ 0 15] [ 5 20] [10 25] ] [ [ 1 16] [ 6 21] [11 26] ] [ [ 2 17] [ 7 22] [12 27] ] [ [ 3 18] [ 8 23] [13 28] ] [ [ 4 19] [ 9 24] [14 29] ] ]
The above is a simple example that could be duplicated by calling
$a>xchg(0,2)
, but it demonstrates the basic functionality of reorder.
As this is an index function, any modifications to the result PDL will change the parent.
mv
Signature: (P(); C(); int n1; int n2)
move a dimension to another position
The command
$b = $a>mv(4,1);
creates $b
to be like $a
except that the dimension 4 is moved to the
place 1, so:
$b>at(1,2,3,4,5,6) == $a>at(1,5,2,3,4,6);
The other dimensions are moved accordingly. Negative dimension indices count from the end.
mv does not process bad values. It will set the badvalue flag of all output piddles if the flag is set for any of the input piddles.
oneslice
Signature: (P(); C(); int nth; int from; int step; int nsteps)
experimental function  not for public use
$a = oneslice();
This is not for public use currently. See the source if you have to. This function can be used to accomplish runtime changing of transformations i.e. changing the size of some piddle at runtime.
However, the mechanism is not yet finalized and this is just a demonstration.
oneslice does not process bad values. It will set the badvalue flag of all output piddles if the flag is set for any of the input piddles.
oslice
Signature: (P(); C(); char* str)
DEPRECATED: 'oslice' is the original 'slice' routine in pre2.006_006 versions of PDL. It is left here for reference but will disappear in PDL 3.000
Extract a rectangular slice of a piddle, from a string specifier.
slice
was the original Swissarmyknife PDL indexing routine, but is
largely superseded by the NiceSlice source prefilter
and its associated nslice method. It is still used as the
basic underlying slicing engine for nslice,
and is especially useful in particular niche applications.
$a>slice('1:3'); # return the second to fourth elements of $a $a>slice('3:1'); # reverse the above $a>slice('2:1'); # return lastbutone to second elements of $a
The argument string is a commaseparated list of what to do for each dimension. The current formats include the following, where a, b and c are integers and can take legal array index values (including 1 etc):
 :

takes the whole dimension intact.
 ''

(nothing) is a synonym for ":" (This means that
$a>slice(':,3')
is equal to$a>slice(',3')
).  a

slices only this value out of the corresponding dimension.
 (a)

means the same as "a" by itself except that the resulting dimension of length one is deleted (so if
$a
has dims(3,4,5)
then$a>slice(':,(2),:')
has dimensions(3,5)
whereas$a>slice(':,2,:')
has dimensions(3,1,5))
.  a:b

slices the range a to b inclusive out of the dimension.
 a:b:c

slices the range a to b, with step c (i.e.
3:7:2
gives the indices(3,5,7)
). This may be confusing to Matlab users but several other packages already use this syntax.  '*'

inserts an extra dimension of width 1 and
 '*a'

inserts an extra (dummy) dimension of width a.
An extension is planned for a later stage allowing
$a>slice('(=1),(=15:8),3:6(=1),4:6')
to express a multidimensional diagonal of $a
.
Trivial outofbounds slicing is allowed: if you slice a source
dimension that doesn't exist, but only index the 0th element, then
slice
treats the source as if there were a dummy dimension there.
The following are all equivalent:
xvals(5)>dummy(1,1)>slice('(2),0') # Add dummy dim, then slice xvals(5)>slice('(2),0') # Outofbounds slice adds dim. xvals(5)>slice((2),0) # NiceSlice syntax xvals(5)>((2))>dummy(0,1) # NiceSlice syntax
This is an error:
xvals(5)>slice('(2),1') # nontrivial outofbounds slice dies
Because slicing doesn't directly manipulate the source and destination pdl  it just sets up a transformation between them  indexing errors often aren't reported until later. This is either a bug or a feature, depending on whether you prefer errorreporting clarity or speed of execution.
oslice does not process bad values. It will set the badvalue flag of all output piddles if the flag is set for any of the input piddles.
using
Returns array of column numbers requested
line $pdl>using(1,2);
Plot, as a line, column 1 of $pdl
vs. column 2
pdl> $pdl = rcols("file"); pdl> line $pdl>using(1,2);
diagonalI
Signature: (P(); C(); SV *list)
Returns the multidimensional diagonal over the specified dimensions.
The diagonal is placed at the first (by number) dimension that is
diagonalized.
The other diagonalized dimensions are removed. So if $a
has dimensions
(5,3,5,4,6,5)
then after
$b = $a>diagonal(0,2,5);
the piddle $b
has dimensions (5,3,4,6)
and
$b>at(2,1,0,1)
refers
to $a>at(2,1,2,0,1,2)
.
NOTE: diagonal doesn't handle threadids correctly. XXX FIX
diagonalI does not process bad values. It will set the badvalue flag of all output piddles if the flag is set for any of the input piddles.
lags
Signature: (P(); C(); int nthdim; int step; int n)
Returns a piddle of lags to parent.
Usage:
$lags = $a>lags($nthdim,$step,$nlags);
I.e. if $a
contains
[0,1,2,3,4,5,6,7]
then
$b = $a>lags(0,2,2);
is a (5,2) matrix
[2,3,4,5,6,7] [0,1,2,3,4,5]
This order of returned indices is kept because the function is called "lags" i.e. the nth lag is n steps behind the original.
$step
and $nlags
must be positive. $nthdim
can be
negative and will then be counted from the last dim backwards
in the usual way (1 = last dim).
lags does not process bad values. It will set the badvalue flag of all output piddles if the flag is set for any of the input piddles.
splitdim
Signature: (P(); C(); int nthdim; int nsp)
Splits a dimension in the parent piddle (opposite of clump)
After
$b = $a>splitdim(2,3);
the expression
$b>at(6,4,x,y,3,6) == $a>at(6,4,x+3*y)
is always true (x
has to be less than 3).
splitdim does not process bad values. It will set the badvalue flag of all output piddles if the flag is set for any of the input piddles.
rotate
Signature: (x(n); indx shift(); [oca]y(n))
Shift vector elements along with wrap. Flows data back&forth.
rotate does not process bad values. It will set the badvalue flag of all output piddles if the flag is set for any of the input piddles.
threadI
Signature: (P(); C(); int id; SV *list)
internal
Put some dimensions to a threadid.
$b = $a>threadI(0,1,5); # thread over dims 1,5 in id 1
threadI does not process bad values. It will set the badvalue flag of all output piddles if the flag is set for any of the input piddles.
identvaff
Signature: (P(); C())
A vaffine identity transformation (includes thread_id copying).
Mainly for internal use.
identvaff does not process bad values. It will set the badvalue flag of all output piddles if the flag is set for any of the input piddles.
unthread
Signature: (P(); C(); int atind)
All threaded dimensions are made real again.
See [TBD Doc] for details and examples.
unthread does not process bad values. It will set the badvalue flag of all output piddles if the flag is set for any of the input piddles.
dice
Dice rows/columns/planes out of a PDL using indexes for each dimension.
This function can be used to extract irregular subsets along many dimension of a PDL, e.g. only certain rows in an image, or planes in a cube. This can of course be done with the usual dimension tricks but this saves having to figure it out each time!
This method is similar in functionality to the slice
method, but slice requires that contiguous ranges or ranges
with constant offset be extracted. ( i.e. slice requires
ranges of the form 1,2,3,4,5
or 2,4,6,8,10
). Because of this
restriction, slice is more memory efficient and slightly faster
than dice
$slice = $data>dice([0,2,6],[2,1,6]); # Dicing a 2D array
The arguments to dice are arrays (or 1D PDLs) for each dimension
in the PDL. These arrays are used as indexes to which rows/columns/cubes,etc
to diceout (or extract) from the $data
PDL.
Use X
to select all indices along a given dimension (compare also
mslice). As usual (in slicing methods) trailing
dimensions can be omitted implying X
'es for those.
pdl> $a = sequence(10,4) pdl> p $a [ [ 0 1 2 3 4 5 6 7 8 9] [10 11 12 13 14 15 16 17 18 19] [20 21 22 23 24 25 26 27 28 29] [30 31 32 33 34 35 36 37 38 39] ] pdl> p $a>dice([1,2],[0,3]) # Select columns 1,2 and rows 0,3 [ [ 1 2] [31 32] ] pdl> p $a>dice(X,[0,3]) [ [ 0 1 2 3 4 5 6 7 8 9] [30 31 32 33 34 35 36 37 38 39] ] pdl> p $a>dice([0,2,5]) [ [ 0 2 5] [10 12 15] [20 22 25] [30 32 35] ]
As this is an index function, any modifications to the
slice change the parent (use the .=
operator).
dice_axis
Dice rows/columns/planes from a single PDL axis (dimension) using index along a specified axis
This function can be used to extract irregular subsets along any dimension, e.g. only certain rows in an image, or planes in a cube. This can of course be done with the usual dimension tricks but this saves having to figure it out each time!
$slice = $data>dice_axis($axis,$index);
pdl> $a = sequence(10,4) pdl> $idx = pdl(1,2) pdl> p $a>dice_axis(0,$idx) # Select columns [ [ 1 2] [11 12] [21 22] [31 32] ] pdl> $t = $a>dice_axis(1,$idx) # Select rows pdl> $t.=0 pdl> p $a [ [ 0 1 2 3 4 5 6 7 8 9] [ 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0] [30 31 32 33 34 35 36 37 38 39] ]
The trick to using this is that the index selects
elements along the dimensions specified, so if you
have a 2D image axis=0
will select certain X
values
 i.e. extract columns
As this is an index function, any modifications to the slice change the parent.
slice
$slice = $data>slice([2,3],'x',[2,2,0],"1:1:1", "*3");
Extract rectangular slices of a piddle, from a string specifier, an array ref specifier, or a combination.
slice
is the main method for extracting regions of PDLs and
manipulating their dimensionality. You can call it directly or
via he NiceSlice source prefilter that extends
Perl syntax o include array slicing.
slice
can extract regions along each dimension of a source PDL,
subsample or reverse those regions, dice each dimension by selecting a
list of locations along it, or basic PDL indexing routine. The
selected subfield remains connected to the original PDL via dataflow.
In most cases this neither allocates more memory nor slows down
subsequent operations on either of the two connected PDLs.
You pass in a list of arguments. Each term in the list controls the disposition of one axis of the source PDL and/or returned PDL. Each term can be a stringformat cut specifier, a list ref that gives the same information without recourse to string manipulation, or a PDL with up to 1 dimension giving indices along that axis that should be selected.
If you want to pass in a single string specifier for the entire
operation, you can pass in a commadelimited list as the first
argument. slice
detects this condition and splits the string
into a regular argument list. This calling style is fully
backwards compatible with slice
calls from before PDL 2.006.
STRING SYNTAX
If a particular argument to slice
is a string, it is parsed as a
selection, an affine slice, or a dummy dimension depending on the
form. Leading or trailing whitespace in any part of each specifier is
ignored (though it is not ignored within numbers).
>>, :, or X
 keep
The empty string,
:
, orX
cause the entire corresponding dimension to be kept unchanged. <n>
 selection
A single number alone causes a single index to be selected from the corresponding dimension. The dimension is kept (and reduced to size 1) in the output.
(<n>)
 selection and collapse
A single number in parenthesis causes a single index to be selected from the corresponding dimension. The dimension is discarded (completely eliminated) in the output.
<n>:<m>
 select an inclusive range
Two numbers separated by a colon selects a range of values from the corresponding axis, e.g.
3:4
selects elements 3 and 4 along the corresponding axis, and reduces that axis to size 2 in the output. Both numbers are regularized so that you can address the last element of the axis with an index of1
. If, after regularization, the two numbers are the same, then exactly one element gets selected (just like the<n>
case). If, after regulariation, the second number is lower than the first, then the resulting slice counts down rather than up  e.g.1:0
will return the entire axis, in reversed order. <n>:<m>:<s>
 select a range with explicit step
If you include a third parameter, it is the stride of the extracted range. For example,
0:1:2
will sample every other element across the complete dimension. Specifying a stride of 1 prevents autoreversal  so to ensure that your slice is *always* forward you can specify, e.g.,2:$n:1
. In that case, an "impossible" slice gets an Empty PDL (with 0 elements along the corresponding dimension), so you can generate an Empty PDL with a slice of the form2:1:1
.Dummy dimensions aren't present in the original source and are "mocked up" to match dimensional slots, by repeating the data in the original PDL some number of times. An asterisk followed by a number produces a dummy dimension in the output, for example
*2
will generate a dimension of size 2 at the corresponding location in the output dim list. Omitting the numeber (and using just an asterisk) inserts a dummy dimension of size 1.
ARRAY REF SYNTAX
If you feed in an ARRAY ref as a slice term, then it can have 03 elements. The first element is the start of the slice along the corresponding dim; the second is the end; and the third is the stepsize. Different combinations of inputs give the same flexibility as the string syntax.
[]
 keep dim intact
An empty ARRAY ref keeps the entire corresponding dim
[ 'X' ]
 keep dim intact[ '*',$n ]
 generate a dummy dim of size $n
If $n is missing, you get a dummy dim of size 1.
[ $dex, , 0 ]
 collapse and discard dim
$dex
must be a single value. It is used to index the source, and the corresponding dimension is discarded. [ $start, $end ]
 collect inclusive slice
In the simple twonumber case, you get a slice that runs up or down (as appropriate) to connect $start and $end.
[ $start, $end, $inc ]
 collect inclusive slice
The threenumber case works exactly like the threenumber string case above.
PDL args for dicing
If you pass in a 0 or 1D PDL as a slicing argument, the
corresponding dimension is "diced"  you get one position
along the corresponding dim, per element of the indexing PDL,
e.g. $a>slice( pdl(3,4,9))
gives you elements 3, 4, and
9 along the 0 dim of $a
.
Because dicing is not an affine transformation, it is slower than direct slicing even though the syntax is convenient.
$a>slice('1:3'); # return the second to fourth elements of $a $a>slice('3:1'); # reverse the above $a>slice('2:1'); # return lastbutone to second elements of $a
$a>slice([1,3]); # Same as above three calls, but using array ref syntax $a>slice([3,1]); $a>slice([2,1]);
sliceb
Signature: (P(); C(); SV *args)
info not available
sliceb does not process bad values. It will set the badvalue flag of all output piddles if the flag is set for any of the input piddles.
BUGS
For the moment, you can't slice one of the zerolength dims of an empty piddle. It is not clear how to implement this in a way that makes sense.
Many types of index errors are reported far from the indexing
operation that caused them. This is caused by the underlying architecture:
slice()
sets up a mapping between variables, but that mapping isn't
tested for correctness until it is used (potentially much later).
AUTHOR
Copyright (C) 1997 Tuomas J. Lukka. Contributions by Craig DeForest, deforest@boulder.swri.edu. Documentation contributions by David Mertens. All rights reserved. There is no warranty. You are allowed to redistribute this software / documentation under certain conditions. For details, see the file COPYING in the PDL distribution. If this file is separated from the PDL distribution, the copyright notice should be included in the file.